
amazon

Nsync Collection Statistics
Intern Project Final Demo

David Munechika
SDE Intern, EC2 Voyager

Summer 2022
dmune@amazon.com



Contents

Introduction

Project Proposal

Required Goals

Stretch Goals

Architecture

Demo

Challenges & Obstacles

Limitations & Future Work

Conclusion

01

02

03

04

05

06

07

08

09



Nsync is a distribution service which stores Virtual Private Cloud (VPC) data in the form of Nsync records. Nsync records 
are grouped into sets called collections. 

The goal of this project is to gather statistics for each collection in the form of CloudWatch metrics. These metrics will be used 
to construct live dashboards that will allow us to predict scaling cliffs and help debug customer issues.

Background

Project Objective



Status: COMPLETED

Set up an Nsync Consumer Client (NCC) 
in Native AWS

Status: COMPLETED
NCC in NAWS

Emit statistics from Fargate instance to 
CloudWatch metric namespace

Status: COMPLETED
Emit Metrics

Gather collections, add update listeners, 
and compute statistics for Nsync 
collections from Zeta

Status: COMPLETED
Compute Statistics

Create dashboards in CloudWatch from 
collection statistics metric data

Dashboards

Required Goals



Status: COMPLETED

Use Nsync service API 
DescribeCollections() function to 
automatically add new collections

Status: COMPLETED

New Collections

Create a pipeline for code and redefine 
architecture in CDK code

Status: COMPLETED
Pipeline & CDK

Train anomaly detection models for 
metric dashboards and setup custom 
alarms

Status: COMPLETED

Optimize statistical analysis using 
distributed computing and horizontal 
scaling

Optimize & Scale

Stretch Goals

Anomaly Detection



Architecture
- Fargate cluster connects to the 

Nsync endpoint through an Nsync 
Service Client and Nsync Consumer 
Client (NCC)

- Service Client retrieves all available 
collections using 
DescribeCollections()

- NCC subscribes to a group of 
collections

- NCC streams updates and computes 
statistics for each collection, 
emitting metrics to CloudWatch

- CloudWatch dashboards are 
generated from metric data



Demo

Link to dashboard: 
https://us-east-1.console.aws.amazon.com/cl
oudwatch/home?region=us-east-1#dashboard
s:name=Nsync-Collection-Statistics 

https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#dashboards:name=Nsync-Collection-Statistics
https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#dashboards:name=Nsync-Collection-Statistics
https://us-east-1.console.aws.amazon.com/cloudwatch/home?region=us-east-1#dashboards:name=Nsync-Collection-Statistics


Connection Staleness Monitoring
Problem: Need to ensure the Nsync Consumer Client remains up-to-date with the current 
collection data.
Solution: Emit a connection staleness metric on each iteration of statistical analysis (for each 
consumer client that is initialized) and implement health checks and CloudWatch alarms to 
trigger if the staleness exceeds a certain threshold.

Challenges and 
Obstacles



Number of Collections
Problem: One Fargate instance doesn’t have enough compute resources to handle all 93 
collections in Zeta.
Solution: Spawn multiple instances with increased CPU and memory resources and different 
environment variables indicating which group of collections to subscribe to.

Challenges and 
Obstacles



Large Collection Sizes
Problem: The largest collections had upwards of 65 million records which made it 
impossible to achieve a dashboard metric granularity of 1 minute when iterating over the 
records.
Solution: For these collections, individual child threads with batch CloudWatch emission 
was used to divide up the statistical computation into groups of 1 million records.

Challenges and 
Obstacles



Cold Starts
Problem: Nsync Consumer Client can take up to 15 minutes to cold start which can lead to 
gaps in dashboard metric data.
Solution: Redefine service health checks to provide a timeout that is sufficient to allow the 
service the cold start without being interrupted by a task restarting. Also, setup persistence 
configuration in the form of RocksDB databases for each Nsync Consumer Client.

Challenges and 
Obstacles



Limitations and Future Work

Limitation: Environment variables are used to define instance collection groups. An auto-scaling capability would allow this 
service to more easily scale to other regions and availability zones.

Future Work: Implement an orchestrator which decides which tasks should subscribe to which collections. Eliminate the need 
for using environment variables and allow tasks to be auto-scaled rather than manually created.

Horizontal Scaling

Limitation: Since each Fargate instance subscribes to at least one total collection, the service still struggles to support the desired 
metric granularity for extremely large collections (concretely, collections with more than 50 million records). 

Future Work: It would be useful to be able to divide up statistical computation of a single collection across multiple instances. 
Alternatively, different compute instance options could be tested which may have the resources capable for handling such large 
collections.

Extremely Large Collections



Thanks!


